History of the Universe Unit Tracking sheet

Learning Target	Question Example	Date Target was Taught in Class
The Big Bang Theory explains how the universe formed	How did the Big Bang start?	
The Doppler Effect is evidence of an expanding universe	When a galaxy is traveling away from the Earth what is happening to the light waves?	
The Big Bang created the first two elements—Hydrogen and Helium	Over 99% of the atoms in our Universe are	
The Big Bang left behind an echo of energy	How does Cosmic Microwave Background Radiation support the Big Bang theory?	
Fusion inside stars created the elements on the Periodic Table	Where did all of the iron, oxygen, gold, and other elements on Earth come from?	

My Progress

	Pre-	Test	The Ba The	Big ng ory	Dop Eff	pler ect	H an	d He	Backg Radi	round ation	Ste Fus	llar ion	Post	Test
4														
(90-100%)														
3														
(80-89%)														
•••														
2														
(70-79%)														
1														
(0-69%)														

AH-HA]

Why do scientists accept the Big Bang Theory?

Science Starter Sheet

Date	Question	Answer

Science Starter Sheet

Date	Question	Answer

History of the Universe-Timeline Activity

Part 1—Put these Universe events in the order that you believe they occurred (from the first event to the last event)

 The first flowers appeared on Earth	 The first galaxies were formed
 The first stars in the Universe were formed	 The first dinosaurs appeared on Earth
 The formation of our Moon	 The formation of our Sun
 The Big Bang	 The first bacteria appeared on Earth
 The formation of Earth's oceans	 The first protons and neutrons were formed
 The first humans appeared on Earth	 The formation of our Earth
The first atoms were formed	

Part 2—Now that you know the correct order of Universe events, estimate how long ago each event happened. (HINT: Scientists believe the Universe is nearly 14 billion years old).

Estimate					
Event	How Many Years Ago?	Event	How Many Years Ago?		

Part 3—Use the Register Tape provided by your teacher to map out the event dates that you predicted in part 2. Mark one end of the tape "14 billion years ago" and the other end "Present Day." Every 3 inches is equal to 1 billion years.

14

Part 4—After seeing the correct answers to Part 3, explain how close your answers were to the correct answers (which events did you most closely map):

Correct Answers					
Event	How Long Ago?	Event	How Long Ago?		

Part 5—Write down the correct time line of events below:

Analysis:

1. Why do you believe it is difficult for some people to understand how old the Universe is?

2. Name two new things that you learned today:

Birth of the Universe - Video Notes

- 1. What is everything made out of?
- 2. Where does all matter come from?

- 3. What size was the universe at the very beginning?
- 4. Name the American astronomer who first came up with the idea that the universe was once tiny?
- 5. Describe what was happening to the baby universe in the first seconds of its life.
- 6. What was the baby universe made out of?
- 7. What were the first atomic nuclei to be formed once the universe cooled off enough? Why were they not atoms yet?
- 8. What enabled light to come through the universe?
- 9. What does that flash of light tell us about the universe now?
- 10. What other evidence do we have of the big bang?

- 12. What kind of information does the picture of the cosmic background radiation give scientists?
- 13. How do stars form?
- 14. What is going on inside stars?
- 15. In what year was the Hubble Space telescope launched into space?
- 16. What is the importance of the Hubble space telescope?
- 17. How are heavy elements made inside stars?
- 18. What has to happen for heavier elements than iron to form?
- 19. Describe the death of a star.
- 20. Explain the importance of supernova explosions.
- 21. How did our Earth form?

How was the Universe Created?

What	is a	1 Theo	ory?
------	------	--------	------

Events that formed the Universe

- THE ______ superfast expansion
- The universe is a hot soup of ______, ____, and other particles.
- Quarks clump into ______ and neutrons
- 3 minutes after the big bang, the universe ______ enough for the first ______ to form.
- The First atoms were_____(H) and _____(He)
- Matter separates into ______.
- Gas and dusts accumulate as a ______.
- Nebula ______ to form a spinning disk
- _____pulls gases to the center of the disk
- Then ______ and ______ form

Moving Galaxies

- Most galaxies are ______ from Earth
- Only a couple are moving ______ us
- The ______ away a galaxy is the ______ it is moving.
- The universe is _____!

_____·

The Big Bang Theory

- All the matter in the universe came together at _______
- Then ______ billion years ago the universe formed in an enormous

How do we know the Universe is a	expanding? The	Effect
• The	change in the	of a
wave caused by the relative		_ between the source of the wave and
the observer.		

Waves •

- _____= the distance from the top of one crest to the top of the
- next one
- The ______ of a wave is equal to the number of waves that pass a particular point in one second.

Doppler Effect in Water Draw and describe what you see.

Stationary Bug	

Bug Moving	

Doppler Effect in Sound

• What happens to sound when it is in motion? *Describe or Draw it.*

LIGHT

• Light is an _____ wave. The _____ is a continuous range of waves extending from radio waves to gamma rays. visible Infrored X rays Microwaves. Radio waves Ultraviolet Gamma rays 10⁶ 1 million 104 10 10 10¹² 1 trillion 10** 10* 10* 100 trillion 1 billion 1 million trillion Frequency in hertz The Doppler Effect also occurs for . When a light source approaches, there is an increase in ; when it moves away, there is a BLUESHIFT REDSHIFT decrease if frequency. An increase in frequency is called a ______. A decrease in frequency is called a _____ Because most galaxies show a ______ in the color of their light, this is evidence that they are moving _____ from one another. So is evidence that our universe is ļ

Spectrum Lab Sheet

Use a spectroscope or diffraction grating film to observe the different sources of light. Color the spectral lines that you see for each source.

Hydrogen Gas	Helium Gas
Neon Gas	Traditional Light Bulb
Florescent Light Bulb	Electronic Device

Analysis:

- 1. Why do traditional light bulbs and florescent light bulbs have different spectral lines?
- 2. What happens when you look through TWO spectroscopes or TWO pieces of film?
- 3. Why do you believe each atom has different spectral lines?
- 4. How could a spectroscope inform an astronomer of what elements are in a star?

What is the Big Bang?

Recall how previously you learned that using the Doppler Effect will help determine if a red shift or a blue shift is occurring with respect to stars. This activity is designed to help you see how the red shift provides the opportunity to model the big bang Theory as it relates to the red shift.

Procedure:

- 1. Blow up the balloon until it is about 10 centimeters in diameter.
 - \circ Do not tie the end.
 - Have a partner mark six dots scattered around the surface of the balloon.
 - Label one of dot as "MW," to represent the Milky Way Galaxy.
 - The other dots represent other galaxies throughout the universe.
- Without letting any air out of the balloon, blow more air into the balloon until the diameter is approximately 5 cm larger.
 Observe the change in the location of the dots relative to each other.
- 3. Repeat the process, this time blowing up the balloon so that it is 5 cm larger in diameter.
- 4. Now blow up the balloon so that it is almost as full as it can go. DO NOT POP IT. Repeat your observations.

Analysis:

- 1. If you were standing at the point labeled "MW," what kind of shift would you expect to see in the spectra of the dots representing other galaxies?
- 2. Why are color shifts important in understanding what is happening to the universe?
- 3. Imagine that you didn't see the balloon *start* expanding; but you then witnessed the balloon continue to expand, what could you infer about the size of the balloon before you began watching?
- 4. How does the expansion of the balloon relate to the expansion of the universe?

Hubble's explanation of the expanding universe

When Hubble noticed all of the red shifts compared to the very few blue shifts, he realized that the universe is expanding. Just as you did during the balloon analysis, scientists can now point to what the universe must have looked like in the past if we are currently watching it expand. Remember our loaf of raisin bread. If you walked into the kitchen and observed that the bread had been rising, what could you say about what the loaf looked like 15 or 20 minutes ago? The same thing happens with the universe. As we watch the universe get larger, we can say that at some point in time, the matter and energy that forms the universe must have been much closer together. What could have sent all of that material flying outward into space? Only an explosion beyond anything we have ever seen could have done that.

This explosion is known as the **big bang**, and is generally referred to as the beginning of the universe. At a certain time in the past, all matter and energy was found in one spot. Over 13 billion years ago, the big bang sent that matter and energy outward, and the universe began. If the universe is truly expanding, then that means that at some point in time, all of the matter must have been together, just as in the balloon analysis.

Graphing Redshift

For the last century, Astronomers have gathered information about bright objects in our sky. Below you will find information about 16 celestial objects. The objects are labeled as "M" objects (M stands for Messier, an Astronomer from the 18th century), or "NGC" objects (NGC stands for New General Catalog, which is a worldwide complied list of objects in our night sky).

Object M60, which is 55 million light-years away (Mly), is traveling at 1,117 km/s. Object M82 is 11.5 Mly away, traveling 203 km/s. Object NGC 5010 is 140 Mly away, traveling 2975 km/s. The object named NGC 5078, which is 94 Mly away, is traveling 2168 km/s. M101, just 21 Mly away, is traveling 241 km/s. NGC 5490 is a whopping 218 Mly from Earth, and it is traveling 4,928 km/s.

Object **M64** is 24 Mly from our planet, traveling 408 km/s, while object **NGC 5101** is 89 Mly away, traveling at 1,868 km/s. **M51**, 23 Mly away, is moving at a speed of 463 km/s. **NGC 5091** is 150 Mly away from Earth,

traveling at 3,420 km/s. An object called **M105** is 32 Mly away, traveling at 911 km/s, and just a little farther is object **M95**, 33 Mly away, and it is moving at 778 km/s.

M74 is closer than those last two, at just 30 Mly away. Its speed is 657 km/s. M84 is twice as far, 60 Mly away! Its speed is 1,060 km/s! Object M49 is 56 Mly away, traveling at 997 km/s. And M66 is 36 Mly away, traveling at 727 km/s.

Object	Speed (km/s)	Distance (Mly)
M60	1,117	55

Organize the data above into a table:

Now make a scatter plot graph with each celestial object below. Don't forget to label the objects on the graph as well as the x and y axis.

(HINTS: speed will be on the x-axis and distance will be on the y-axis; label the x-axis in increments of 200—up to 5000, and the y-axis in increments of 10—up to 250)

Analysis Questions:

- 1. Which object is farthest from Earth?
- 2. Which object is closest to Earth?
- 3. Which object has the fastest speed?
- 4. Which object has the slowest speed?
- 5. Finish the following sentence: *The farther away an object is from Earth, the...*

6. Match each of the following objects to a wavelength below. Remember, the farther an object is from the Earth, the longer the wavelength of light that is emitted.

- 7. If astronomers found a galaxy that was 90 Mly away, traveling at 100 km/s, would that information fit the pattern on your graph? Explain your answer with a full sentence.
- There are many galaxies and other celestial objects in our sky that are listed as having negative speeds (like -230 km/s, or -1,056 km/s). What do you think this means? Why?

Coloring Red and Blue Shift

- A. Color the DASHED spectroscopy lines.
- B. Use the spectrum key to name the element OR the ELEMENTS.
- C. Identify whether the star has red shift or blue shift (which way did the lines move?)

Now each star will have MORE THAN ONE element within it! Star 4:

υv Violet Yel. Blue Green Org. Red Infrared ш Ц Ц. 11 I I 11 11 11 I L I 11 1 1 11 6000 5000 7000 4000 (Units = Angstroms)

Which 2 Elements? ______ What shift?______

Stor 5:											
	UV	Violet	Blue	Green	Yel.	Orag.	Red	Infrared			
							.				
		- I		1			• 1				
		- I	1	1			•				
								•			
			-	-			•				
	40	00	5000		6000		7000				
	(Units = Angstroms)										

Which 2 Elements? ______ What shift?_____

Star 10:

Û.	UV	Violet	Blue	Green	Yel.	Org.	Red	Infrared				
					Τ.			•				
			1		1.	- I	1					
			1		•	1	1					
					-							
	40	00	5000		6000		7000					
	(Units = Angstroms)											

Which 2 Elements? ______ What shift? ______

Star Life Cycle

Extra Notes:			

The Periodic Table of the Elements

1																	2
Н																	He
Hydrogen 1.00794		_															Helium 4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	Ο	F	Ne
Lithium 6.941	Beryllium 9.012182											Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
Sodium 22.989770	Magnesium 24.3050											Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	Iron 55.845	Cobalt 58.933200	Nickel 58.6934	Copper 63.546	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90585	Zirconium 91.224	Niobium 92.90638	Molybdenum 95.94	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Cesium 132.90545	Barium 137.327	Lanthanum 138.9055	Hafnium 178.49	Tantalum 180.9479	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.078	Gold 196.96655	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	Dubnium (262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Periodic Table and Heavy Elements

I. Shade in the following elements on your periodic table with a different color for each group

Light elements produced in Big Bang	Heavier elements formed by nuclear fusion.	Heaviest elements form in supernova		
Hydrogen (H)	Iron (Fe)	Tin (Sn)		
Helium (He)	Nitrogen (N)	Nickel (Ni)		
Lithium (Li)	Silicon (Si)	Lead (Pb)		
	Magnesium (Mg)	Zinc (Zn)		
	Sulfur (S)			

II. For each of the following elements identify whether it most likely originated from the big bang, nuclear fusion in stars, or through supernovas

Gold (Au): _____
 Sodium (Na): _____
 Hydrogen (H): _____

4. Carbon (C): _____ 5. Helium (He): _____ 6. Uranium (U): _____

7. Oxygen (O):	
8. Lead (Pb):	
9. Xenon (Xe):	

Name the element shown by the following drawings:

1.

Θ

Θ

Now draw a picture of an Oxygen atom: